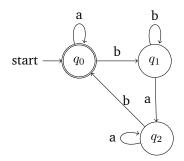
Homework 1 Finite State Automata and Regular

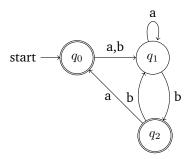
Expression

Homework rules

- Group discussion is *highly recommended*. But you have to write down your solution by *yourself*. Aim for clarify and conciseness in your solution, emphasizing the main ideas over low-level details.
- You should *cite* all the references that help you to solve the homework, including the people you have discussed with and the online material you looked at.
- You are required to type your solution using latex and submit a *pdf* and a *tex* file by email to csie.tamc@gmail.com. You may type your solution in English (preferable) or Chinese.
- You are not expected to solve *all* problems. Just try your best! If you don't solve a problem, try your best to write down your thinking process.
- \bullet There are total 10 problems, each weight 10 pts and 1 bonus problem which weights additional 20 pts. Total: 100 + 20(bonus) points.
- 1. (Fun with DFA) For each of the following languages, construct a DFA that accepts the language. In all cases, the alphabet is $\{0,1\}$.
 - (a) $\{w \mid |w| \equiv 0 \mod 3\}$.
 - (b) $\{w \mid 110 \text{ is not a substring of } w\}$.
 - (c) $\{w \mid \text{ every odd position in } w \text{ is } 1\}.$
 - (d) $\{w \mid w \text{ contains at least two 1s and at most two 0s}\}.$
 - (e) $\{\epsilon, 0\}$.
- 2. Convert the DFAs to a regex:



(a)



- 3. (Fun with NFA) For each of the following languages, construct an NFA, with the specified number of states, that accepts the language. In all cases, the alphabet is $\{0,1\}$.
 - (a) $\{w \mid w \text{ ends with } 10\}$ with 3 states.
 - (b) $\{w \mid w \text{ contains the substring } 1011\}$ with 5 states.
 - (c) $\{w \mid w \text{ contains an odd number of 1s or exactly two 0s}\}.$
 - (d) $\{w \mid w \text{ begins with } 1 \text{ or ends with } 0\}$ with whatever number of states you like.
 - (e) $\{11, 111\}^*$ with whatever number of states you like.
- 4. (Fun with regex) Give regular expressions describing the following languages. In all cases, the alphabet is $\{0,1\}$.
 - (a) $\{w \mid w \text{ contains with at least three 1s} \}$.
 - (b) $\{w \mid w \text{ contains exactly two } 0s \text{ and at least two } 1s\}.$
 - (c) $\{w \mid \text{ every odd position in } w \text{ is } 1\}.$
- 5. If $n \in \mathbb{N}$ and $w = a_1 \cdots a_n$ is a string, for each $i \in [n-1] \cup \{0\}$, the string $a_1 \cdots a_i$ is called a *proper prefix* of w. For any language L, we define

$$MIN(L) := \{ w \in L \mid \text{ no proper prefix of } w \text{ belongs to } L \}.$$

Prove that if L is regular, then MIN(L) is regular as well.

- 6. (a) Given an alphabet Σ , for any language $L \subseteq \Sigma^*$, prove that $L^{**} = L^*$ and $L^*L^* = L^*$.
 - (b) Prove that every finite language is regular.
 - (c) Given an example of a non-regular language A and a regular language B such that $A \subseteq B$.
 - (d) Given an example of a non-regular language A and a regular language B such that $B \subseteq A$.

Let L be nay regular language over some Σ . Define the languages:

$$\begin{split} L^{\infty} &:= \bigcup_{k \geq 1} \{w^k \mid w \in L\}, \\ L^{1/\infty} &:= \{w \mid w^k \in L \text{ for all } k \geq 1\}, \\ \sqrt{L} &:= \{w^k \in L \text{ for some } k \geq 1\}. \end{split}$$

And also for any $k \in \mathbb{N}$, let

$$L^{(k)} := \{ w^k \mid w \in L \},$$

$$L^{(1/k)} := \{ w \mid w^k \in L \}.$$

- (e) Prove that $L^{(1/3)}$ is regular.
- (f) What about $L^{(3)}$?
- (g) Let $k \in \mathbb{N}$. Prove that there are only finitely many languages of the form $L^{(1/k)}$ and that they are all regular.
- (h) Is $L^{1/\infty}$ regular or not?
- (i) Is \sqrt{L} regular of not?
- (j) What about L^{∞} ?

- 7. Which of the following languages are regular? Justify each answer.
 - (a) $L = \{wcw \mid w \in \{a, b\}^*\}.$
 - (b) $L = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}.$
 - (c) $L = \{a^n \mid n \text{ is a prime number}\}.$
 - (d) $L = \{a^m b^n \mid \gcd(m, n) = 17\}.$
- 8. Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA. A state $q\in Q$ is reachable iff there is some string $w\in \Sigma^*$ such that $\hat{\delta}(q_0,w)=q$. Consider the following method for computing the set $Q_r\subseteq Q$ of reachable states: define the sequence of sets $Q_r^i\subseteq Q$ where

$$Q_r^0 := \{q_0\}$$

$$Q_r^{i+1} := \{q \in Q \mid \exists p \in Q_r^i, \exists a \in \Sigma, \ q = \delta(p, a)\}.$$

- (a) Prove by induction on i that Q_r^i is the set of all reachable states from q_0 using paths of length i.
- (b) Give an example of a DFA such that $Q_r^{i+1} \neq Q_r^i$ for all $i \geq 0$.
- (c) Change the inductive definition of Q_r^i as follows:

$$Q_r^{i+1} := Q_r^i \cup \{q \in Q \mid \exists p \in Q_r^i, \exists a \in \Sigma, \ q = \delta(p, a)\}.$$

Prove that there exists an i_0 such that $Q_r^{i_0+1}=Q_r^{i_0}=Q_r$.

Define the DFA M_r as follows: $M_r = (Q_r, \Sigma, \delta_r, q_0, F \cap Q_r)$, where $\delta_r : Q_r \times \Sigma \to Q_r$ is the restriction of δ to Q_r .

- (d) Explain why M_r is indeed a DFA.
- (e) Prove that $L(M_r) = L(M)$. A DFA is called reachable or trim if $M = M_r$.
- 9. Let $\Sigma = \{a_1, \dots, a_n\}$ be an alphabet of n symbols.
 - (a) Construct an NFA with 2n+1 states accepting the set L_n of strings over Σ such that, every string in L_n has an odd number of a_i , for some $a_i \in \Sigma$. Equivalently, if L_n^i is the set of strings over Σ with an odd number of a_i , then $L_n = L_n^1 \cup \cdots \cup L_n^n$.
 - (b) Prove that there is a DFA with 2^n states accepting the language L_n .
 - (c) Prove that every DFA accepting L_n has at least 2^n states.
- 10. Given two DFAs $M_i=(Q_i,\Sigma,\delta_i,q_{0i},F_i)$, i=1,2, a morphism $h:M_1\to M_2$ of DFAs is a function $h:Q_1\to Q_2$ satisfying the following:
 - $h(\delta_1(p,a)) = \delta_2(h(p),a)$, for all $p \in Q_1$ and all $a \in \Sigma$.
 - $h(q_{01}) = q_{02}$.

An F-map $h: M_1 \to M_2$ is a morphism h satisfying $h(F_1) \subseteq F_2$. A B-map $h: M_1 \to M_2$ is a morphism h satisfying $h^{-1}(F_2) \subseteq F_1$. A proper homomorphism of DFAs is an F-map and also a B-map, i.e. $h^{-1}(F_2) = F_1$.

(a) Prove that if $f: M_1 \to M_2$ and $g: M_2 \to M_3$ are morphisms (resp. F-maps, resp. B-maps) of DFAs, then $g \circ f: M_1 \to M_3$ is also a morphism (resp. F-map, resp. B-map).

(b) If $h: M_1 \to M_2$ is a morphism, prove that

$$h(\hat{\delta}_1(p, w) = \hat{\delta}_2(h(p), w)$$

for all $p \in Q_1$ and all $w \in \Sigma^*$.

- (c) Prove that if $h: M_1 \to M_2$ is a proper homomorphism, then $L(M_1) = L(M_2)$.
- 11. (Bonus) (Morphisms between NFAs) In this problem we assume that we are considering NFAs without ϵ -transitions.

Given two NFAs $N_i = (Q_i, \Sigma, \delta_i, q_{0i}, F_i)$, i = 1, 2, we say that a relation $\varphi \subseteq Q_1 \times Q_2$ is a *simulation* of N_1 by N_2 , denoted by $\varphi : N_1 \to N_2$, if the following properties hold:

- $(q_{01}, q_{02}) \in \varphi$.
- Whenever $(p,q) \in \varphi$, for every $r \in \delta_1(p,a)$, there is some $s \in \delta_2(q,a)$ so that $(r,s) \in \varphi$, for all $a \in \Sigma$.
- Whenever $(p,q) \in \varphi$, if $p \in F_1$ then $q \in F_2$.
- (a) If N_1 and N_2 are actually DFAs, show that an F-map $\varphi: N_1 \to N_2$ of DFAs is a simulation of N_1 by N_2 .
- (b) Let $\varphi: N_1 \to N_2$ be a simulation of N_1 by N_2 . Prove that for every $w \in \Sigma^*$, for every $q_1 \in \hat{\delta}_q(q_{01}, w)$, there is some $q_2 \in \hat{\delta}_2(q_{02}, w)$ so that $(q_1, q_2) \in \varphi$.
- (c) Conclude that $L(N_1) \subseteq L(N_2)$.
- (d) If N_1 is an NFA and N_2 is a DFA, prove that if $L(N_1) \subseteq L(N_2)$, then there is some simulation $\varphi: N_1 \to N_2$ of N_1 by N_2 . Hint. Consider the relation $\varphi = \{(q_1, q_2) \mid q_1 \in \hat{\delta}_1(q_{01}, w), q_2 = \hat{\delta}_2(q_{02}, w), w \in \Sigma^*\}$.

Remark. If N_1 and N_2 are DFAs and $L(N_1) \subseteq L(N_2)$, then there may not exist any DFA map from N_1 to N_2 , but above shows that there is always a simulation of N_1 by N_2 .

(e) Give a counter-example showing that (c) is generally *false* for NFAs, i.e., if N_1 and N_2 are both NFAs and $L(N_1) \subseteq L(N_2)$, there may not be any simulation $\varphi: N_1 \to N_2$.

In order to salvage (c), we modify the conditions of the definition of a simulation: we say that $\varphi: N_1 \to N_2$ is a *generalized simulation* (or *g*-simulation) if

- $(q_{01}, q_{02}) \in \varphi$
- Whenever $(p,q) \in \varphi$, for all $a \in \Sigma$, if $\delta_1(p,a) \neq \emptyset$ and $\delta_2(q,a) \neq \emptyset$, then for every $r \in \delta_1(p,a)$, there is some $s \in \delta_2(q,a)$ so that $(r,s) \in \varphi$.
- For all $w \in \Sigma^*$ with $|w| < n_1 2^{n_2}$, for every $q_1 \in \hat{\delta}_1(q_{01}, we) \cap F_1$, there is some $q_2 \in \hat{\delta}_2(q_{02}, w) \cap F_2$ so that $(q_1, q_2) \in \varphi$.
- (f) Prove that $L(N_1) \subseteq L(N_2)$ iff there is some g-simulation $\varphi: N_1 \to N_2$.
- (g) We say that $\varphi: N_1 \to N_2$ is a *g-bisimulation between* N_1 and N_2 if φ is a *g*-simulation between N_1 and N_2 and φ^{-1} is a *g*-simulation between N_2 and N_1 (recall that $\varphi^{-1} = \{(q, p) \in Q_2 \times Q_1 \mid (p, q) \in \varphi\}$).
- (h) Prove that $L(N_1) = L(N_2)$ iff there is some *g*-bisimulation between N_1 and N_2 .