Matrix Algebra and Is Applications Problem Set Before Quiz #2

- 1. If V is W are orthogonal subspaces, show that the only vector they have in common is the zero vector, i.e., $V \cap W = \{0\}$.
- 2. Find a vector x orthogonal to the row space of A, and a vector y orthogonal to the column space, and a vector z orthogonal to the nulspace:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$

3. Draw Figure 3.4 to show each subspace for

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}.$$

- 4. Find the matrix that projects every point in R^3 onto the line, which is the intersection of the planes $x_1+x_2+x_3=0$ and $x_1-x_3=0$.
- 5. Suppose the values $b_1=1$ and $b_2=7$ at times $t_1=1$ and $t_2=2$ are fitted by a line b=Dt through the origin. Find \hat{D} by least square and sketch the observations with the best-fit line. Find \hat{D} by projection and sketch the projection of b onto the column space of t.
- 6. If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find
 - (a) a basis for the orthogonal complement V^{\perp}
 - (b) the projection matrix P onto V
 - (c) the vector in V closest to the vector b = (0, 1, 0, -1) in V^{\perp}
- 7. If P is the projection matrix onto a k-dimensional subspace S of the whole space \mathbb{R}^n , what is the column space of P and what is its rank?
- 8. If u is a unit vector, show that $Q=I-2uu^T$ is an orthogonal matrix and is a reflection transformation. Compute Q when $u^T=(1/2, 1/2, 1-/2, -1/2)$ and explain what Q does to x with Qx.
- 9. Suppose the values $b_1=1$ and $b_2=7$ at times $t_1=1$ and $t_2=2$ are fitted by a line b=Dt through the origin. Find \hat{D} by least square and sketch the observations with the best-fit line. Find \hat{D} by projection and draw the projection of b onto the column space of t.
- 10. Project $b=(0, 3, 0)^T$ onto each of the orthonormal vectors $a_1=(2/3, 2/3, -1/3)^T$ and $a_2=(-1/3, 2/3, 2/3)$. Then, find its projection p onto the plane spanned by a_1 and a_2 . Also find the projection onto $a_3=(2/3, -1/3, 2/3)$ and add the three projections. Why is $P=a_1(a_1)^T+a_2(a_2)^T+a_3(a_3)^T$ equal to I?
- 11. Show that $Q=I-2uu^T$ is an orthogonal matrix.
- 12. (a) Find the bases for the null space and the row space of

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}.$$

(b) Split $x = (3, 3, 3)^T$ into a row-space component x_r and a null-space component x_n . (c) Find the

pseudoinverse of A

- (d) Let $Ax=(9, 21)^T$. Recover the row space component of x.
- (e) Show that the pseudoinverse found in (c) is the right inverse of A.
- 13. Project the vector b=(1, 2) onto a 2-dimensional basis with two vectors, (1, 0) and (1, 1), and show that, unlike the orthogonal basis, the sum of the two projections does not equal to b.
- 14. Show that an orthogonal matrix that is upper triangular must be diagonal.
- 15. Factor

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$$

into QR and find the least squares solution of Ax=b if $b=(1, 2, 7)^T$?

16. Find the best parabola: $y = C + Dt + Et^2$ fit to the following measurements:

$$y = 2$$
 at $t = -1$,
 $y = 0$ at $t = 0$,
 $y = -3$ at $t = 1$,
 $y = -5$ at $t = 2$.

Find your approximate solution by QR factorization and plot the observations together with the best-fit parabola using Excel.

- 17. Find the Fourier coefficients a_0 , a_1 , b_1 , a_2 , b_2 of the step function y(x) which equals 1 on the interval $0 \le x \le \pi/2$ and -1 on the remaining interval $\pi/2 < x < 2\pi$. Plot y(x) and the Fourier series on the same figure (you may use Excel to create the figure).
- 18. Find the determinants of

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

by eliminations and possible row exchanges.

- 19. What is the volume of the parallelepiped with the four of its vertices at (1, 1, 1), (-1, 2, 2), (2, -1, 2) and (2, 2, -1)?
- 20. If a 6 by 6 determinant is expanded into the sum of 6^6 determinants by splitting each row into 6 coordinate directions, how many determinant terms in the expansion are sure to be zero if $a_{21}=0$?
- 21. Find the determinant of A, if $a_{ij}=i+j$.